Physiological tipping points in a changing ocean -

Strongylocentrotus droebachiensis: larval development within a broad range of pCO$_2$

Narimane Dorey, Pauline Lançon, Mike Thorndyke and Sam Dupont

narimane.dorey@gmail.com
Background

pH variability in the environment is big
Background

pH variability in the environment is **big**

- Daily

Fig. 5 Change in mean pH (±SE) of water samples from 4 habitats from the shallow back-reef at Lizard Island, together with the tidal heights (grey line). over a 48-h period. pH was sampled every 2 h. Habitats were: **a** subsurface; **b** Pocillopora damicornis; **c** D. perspicillatus algal garden; **d** open sand

Background

pH variability in the environment is **big**

- Daily
- Seasonally
Background

pH variability in the environment is **big**

- Daily
- Seasonally

Ocean acidification

Increased CO₂ in the atmosphere

\[
\text{CO}_2 \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{HCO}_3^- \rightarrow \text{CO}_3^{2-} \rightarrow \text{more acidic waters (OA)}
\]

Fig. 5 Change in mean pH (±SE) of water samples from 4 habitats from the shallow back-reef at Lizard Island, together with the tidal heights (grey line). Over a 48-h period, pH was sampled every 2 h. Habitats were: a subsurface; b *Pocillopora damicornis*; c *D. perspicillatus* algal garden; d open sand

Fig. 6 Map of the modelled annual pH range simulated across the southern North Sea domain.
Background

pH variability in the environment is **big**

- Daily
- Seasonally

→ pH of 7.7 are already experienced by organisms living in coastal areas
Background

pH variability in the environment is big

- Daily
- Seasonally

→ pH of 7.7 are already experienced by organisms living in coastal areas

Thomsen et al. 2010 (Biogeosci.)
Background

pH variability in the environment is **big**

- Daily
- Seasonally

→ pH of 7.7 are already experienced by organisms living in coastal areas
Background

pH variability in the environment is big

OA will induce a shift of the pH range

Hauri et al. 2012 (Biogeosci. Discussions)
pH variability in the environment is big

OA will induce a shift of the pH range

Hauri et al. 2012 (Biogeosci. Discussions)
Background

pH variability in the environment is **big**

- Daily
- Seasonally

OA will induce a **shift** of the pH range

→ 1. Need to work with **broader ranges of pH**

→ 2. Need to understand the **physiology** and the **limits** of the organism, including the energetic limits

Hauri et al. 2012 (Biogeosci. Discussions)

Gullmars Fjord (1921-1987)

-0.4 pH units
Energy budgets

CO₂ induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay

M. Stumpp a, J. Wren b, F. Melzner a, M.C. Thorndyke c, S. Dupont b,*

a Biological Oceanography, Leibniz Institute of Marine Sciences (IFM-GEOMAR), 24105 Kiel, Germany
b Department of Marine Ecology, Sven Lovén Centre for Marine Sciences, Kristineberg, University of Gothenburg, Sweden
c The Royal Swedish Academy of Sciences, Sven Lovén Centre for Marine Sciences, Kristineberg, University of Gothenburg, Sweden
Hypothesis:

Species sensitivity
Physiological tipping point

Increased pCO_2

- Growth
- Maintenance
Material and methods

Study of a broad range of pH

Push the system to its limits:

→ to reveal the **tipping points** of the organism

Strongylocentrotus droebachiensis
Material and methods

Study of a broad range of pH

Push the system to its limits:
→ to reveal the **tipping points** of the organism

Strongylocentrotus droebachiensis

1 month larval development

<table>
<thead>
<tr>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
</tr>
<tr>
<td>7.9</td>
</tr>
<tr>
<td>7.7</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>7.3</td>
</tr>
<tr>
<td>7.1</td>
</tr>
<tr>
<td>6.5</td>
</tr>
</tbody>
</table>
Material and methods

Study of a broad range of pH

Push the system to its limits:
→ to reveal the tipping points of the organism

Strongylocentrotus droebachiensis

1 month larval development
Growth curves by pH

Transformation: \[\text{Size} = a + \text{Growth Rates} \times \ln(\text{Days}) \]

Slower growth at lower pH
Growth curves by pH

Transformation: Size = a + Growth Rates * ln(Days)

Slower growth at lower pH

Variability of GR between the aquaria
Growth rates as \(f(\text{average } pH) \)

Variability of GR between the aquaria \(\rightarrow \) linked to the average \(pH_T \) during the whole experiment
Growth rates as $f(\text{average pH})$

Variability of GR between the aquaria \rightarrow linked to the average pH$_T$ during the whole experiment

Slower GR with decreasing pH

Developmental delay

Tipping point: mean pH$_T$ < 7.3-7.1
Health of the cultures

At pH 6.5, the eggs were alive but never divided, or divided wrongly (Pagano et al., 1985)
Health of the cultures

At pH 6.5, the eggs were alive but never divided, or divided wrongly (Pagano et al., 1985)
At pH 6.5, the eggs were alive but never divided, or divided wrongly (Pagano et al., 1985)

Health of the cultures

Tipping point: mean pH$_T$ < 7.3-7.1

No ≠ in mortality for same-size larvae raised at pH ≥ 7.3-7.1
There are lower growth rates with lower pH but...

Is a same-size larvae morphologically the exact same larvae in a different pH condition?

Only a developmental delay?
Morphology of an average 350 μm larvae

For a same-size larvae at low pH:

- Wider body width
- Smaller arms
- Increased arm asymmetry
- Bigger stomach volume
No effect when not accounting for growth delay.
Respiration

Stumpp et al., 2011

→ increased respiration

→ increased maintenance costs
Conclusion: Energy budget of Sd larvae

Increased $p\text{CO}_2$

Slower growth rates / Higher abnormality
Conclusion: Energy budget of Sd larvae

- Increased pCO_2
- Slower growth rates / Higher abnormality
- Physiological tipping point
- Numbers:
 - 8.1
 - 7.9
 - 7.7
 - 7.5
 - 7.3
 - 7.1
 - 6.5
Conclusion: Energy budget of Sd larvae

Increased pCO_2

Natural range:

- 8.1
- 7.9
- 7.7
- 7.5

Increased pCO_2 leads to:

- Slower growth rates / Higher abnormality

Physiological tipping point:

- 7.3
- 7.1
- 6.5

The value 6.5 is marked with an X, indicating it is the physiological tipping point.
Conclusion: Energy budget of Sd larvae

2100 Natural range

8.1 7.9 7.7 7.5 7.3 7.1 6.5

Slower growth rates / Higher abnormality

Physiological tipping point

Already a mean of 7.7 is predicted to happen in scenarios for 2100
Conclusion: Energy budget of Sd larvae

Already a mean of 7.7 is predicted to happen in scenarios for 2100

Feeding disturbances // Other stressors (pollutants – temperature)
Team spring - summer 2011

Karen

Géraldine

Julie

Pauline

Nari

Solène

Olga

Sam

Meike

Marian

Karen

Sam Meike Marian

Pauline

Nari

Solène

Olga Sam Meike Marian

Karen

Géraldine

Julie

Pauline

Nari

Solène

Thank you!

narimane.dorey@gmail.com