Decadal Change in the Rate of Ocean Acidification in the Western Pacific Equatorial Zone

Masao Ishii, Naohiro Kosugi, Daisuke Sasano,
Meteorological Research Institute, JMA, Tsukuaba, Japan

Kazutaka Enyo, Shu Saito, Toshiya Nakano,
Climate and Marine Department, JMA, Tokyo, Japan

Takashi Midorikawa,
Nagasaki Marine Observatory, JMA, Nagasaki, Japan

Hisayuki Y. Inoue
Hokkaido University, Sapporo, Japan

Chuuk Lagoon. Photo © FSM Visitors Board.
Tropical and subtropical zones of the western Pacific Ocean accommodate many coral reef habitats and marine biodiversity hotspots where humans critically depend upon them, and the long-term impact of global CO$_2$ increase on coral reef environments could be particularly large.
JMA’s ocean CO$_2$ monitoring at 137ºE repeat line in the western North Pacific

Posters: 54: Enyo et al.
106: Kosugi et al.

Midorikawa et al., *Tellus* 2010; *GRL.*, 2012.
Contents

- Spatial and inter-annual variability in the distributions of carbonate parameters in the western equatorial Pacific.
- Long-term trend of ocean acidification in the western equatorial Pacific warm pool for the past 27 years.
High SST, low salinity, low pCO_2, and low TCO$_2$ in the western equatorial Pacific warm pool

- pCO_2
- SST
- NTCO$_2$
- SSS

Jan. 2002

High SST, low salinity, low pCO_2, and low TCO$_2$ in the western equatorial Pacific warm pool
Inter-annual variability of surface CO$_2$ distributions associated with El Niño Southern Oscillation

pCO_2

SST

NTCO$_2$

SSS

Jan. 2001
Jan. 2002
Jan. 2003

Longitude

$SST/°C$

$NTCO_2/\mu$molkg^{-1}

SSS

Longitude
Large variability in pH and Ω and little variability in NTA
Long-term trend of ocean acidification in the western equatorial Pacific warm pool for the past 27 years.

Method

1. **CO₂ fugacity** in surface water
 - in the warm pool:
 - $T /{°C} \geq 29.0$
 - $S \leq 34.8$
 - $\sigma_t \geq 21.8$

2. **Total alkalinity**
 - $2300 \, \mu\text{mol kg}^{-1}$ at $S=35$

3. **SST, SSS**
 - Dissociation constants of carbonic acid: Lueker et al., 2000.

Data

1. **SOCAT V1.5** [1984 - 2008]
2. Historical $p\text{CO}_2$ data
3. JMA’s $p\text{CO}_2$ monitoring data [2009 - 2011]
4. **GLODAP + PACIFICA** [1992 - 2007]
5. Underway $p\text{CO}_2$ / TCO₂ measurements by MRI and JAMSTEC [1994 - 2003]

TCO₂, pH@SST, Ωarag, Ωcal
TCO$_2$ and TA measurements in the western equatorial Pacific

GLODAP + PACIFICA
- warm pool
- divergence zone

pCO_2-TCO$_2$ underway measurements
- warm pool
- divergence zone.

NTA shows little variability both in space and time over the western equatorial Pacific.
Trends of fCO_2 and NTCO$_2$

in the western equatorial Pacific warm pool

Data distribution

Christmas Is. (Kiribati) by NOAA/ESRL

Rate of change

$fCO_2$$_{sw}$: $+1.31 \pm 0.14$ μatm yr$^{-1}$

$fCO_2$$_{air}$: $+1.64 \pm 0.01$ μatm yr$^{-1}$

NTCO$_2$: $+0.77 \pm 0.08$ μmol kg$^{-1}$ yr$^{-1}$
Trends of $f\text{CO}_2$ and NTCO_2

in the western equatorial Pacific warm pool

Data distribution

Christmas Is. (Kiribati)
by NOAA/ESRL

Rate of change

$f\text{CO}_2\text{sw} : +1.31 \pm 0.14 \mu\text{atm yr}^{-1}$

$f\text{CO}_2\text{air} : +1.64 \pm 0.01 \mu\text{atm yr}^{-1}$

NT$\text{CO}_2 : +0.77 \pm 0.08 \mu\text{mol kg}^{-1} \text{ yr}^{-1}$
Trends of pH, Ω_{calc} and Ω_{arag} in the western equatorial Pacific warm pool

Rate of change

- pH$_@$SST: -0.0013 ± 0.0001 yr$^{-1}$
- Ω_{calc}: -0.012 ± 0.001 yr$^{-1}$
- Ω_{arag}: -0.008 ± 0.001 yr$^{-1}$
Trends of pH, Ω_{calc} and Ω_{arag}

in the western equatorial Pacific warm pool

Rate of change

$pH_{@\text{SST}}: -0.0013 \pm 0.0001 \text{ yr}^{-1}$

$\Omega_{\text{calc}}: -0.012 \pm 0.001 \text{ yr}^{-1}$

$\Omega_{\text{arag}}: -0.008 \pm 0.001 \text{ yr}^{-1}$
Changes in the mean rate for each decade

atmospheric CO₂ rise & buffer factor

\(f_{CO_2sw} \)

Linear rate

\(d\text{CO}_2/dt \) (µatm yr\(^{-1}\))

\(d\text{NTCO}_2/dt \) (µmol kg\(^{-1}\) yr\(^{-1}\))

\(d\text{pH}_{@SST} \) (yr\(^{-1}\))

\(d\Omega_{arag}/dt \) (yr\(^{-1}\))
Conclusions

- The progress of ocean acidification as a result of the increase of CO$_2$ content was evidenced in the western equatorial Pacific warm pool.

- In the long-term (1985 – 2011), rates of change in fCO$_2$, NTCO$_2$, pH and Ωs are slightly slower than those estimated from the rate of the atmospheric CO$_2$ increase and buffer factor.

- However, these rates varied significantly with the period of observation.
Future works

- We need to continue ocean CO$_2$ monitorings both in open oceans and in coastal regions for long-term.
- What control the ocean acidification in such a calm warm pool region;
 - sea-air CO$_2$ exchange in the equatorial Pacific?
 - and/or
 - anthropogenic CO$_2$ transport via the shallow meridional overturning circulation from the South and the North Pacific?
- Any feedbacks from the ocean climate variability?